24.6 Summary of Copulas
Copula | Shape | Dependency | \(\tau\) |
---|---|---|---|
Frank’s | Symmetric | Light tails | Complicated has an integral |
Gumbel | Asymmetric | More weight in the right. Higher tail than Frank | \(1 - \dfrac{1}{a}\) |
HRT | Asymmetric | Less tail on the left but high on the right | \(\dfrac{1}{2a + 1}\) |
Normal | Symmetric | Higher tail than Frank | \(\dfrac{2\mathrm{arcsin}(a)}{\pi}\) |
Key things to know:
Density of the copula is the 2nd derivative w.r.t. both \(u\) and \(v\)
Conditional probability of \(y\) is the derivative of the copula w.r.t. \(u\) (Or \(x\) and \(v\))
How to simulate a joint distribution
Not important to memorize formulas
24.6.1 Frank’s Copula
Properties:
Small tail dependencies compared to Gumbel and HRT
\(\tau\) for Frank is not closed form
Frank Copula
\[\begin{equation} C(u,v) = - \dfrac{1}{a} \ln \left(\ 1 + \dfrac{g_u g_v}{g_1} \right) \tag{24.6} \end{equation}\] \[\begin{equation} g_z = e^{-az} -1 \tag{24.7} \end{equation}\]Conditional distribution
\[\begin{equation} \Pr(Y \leq y \mid X = x) = C_1(u,v) = \dfrac{g_u g_v + g_v}{g_u g_v + g_1} \tag{24.8} \end{equation}\]Density
\[\begin{equation} c(u,v) = - \dfrac{a g_1(1 + g_{u+v})}{(g_u g_v + g_1)^2} \tag{24.9} \end{equation}\]Kendall’s \(\tau\)
\[\begin{equation} \tau(a) = 1 - \dfrac{4}{a} + \dfrac{4}{a^2} \int \limits_0^a \dfrac{t}{e^t - 1} dt \tag{24.10} \end{equation}\]\(\tau\) is negative when \(a\) is negative
24.6.1.1 Simulation
Need the conditional distribution \(P(Y \leq y \mid X = x)\)
Given \(\tau\) we can solve for \(a\) which is used in the conditional formula
For a given \(\tau\), we solve for \(a\) using (24.10)
Simulate 2 r.v.
\[u,p \sim U[0,1]\]
- Use \(u\) to determine \(x\) and use \(p\) to find \(y \mid x\)
\[x = F^{-1}(u)\]
Use the conditional distribution to find \(y\) by setting \(p = P(Y \leq y \mid X = x) = C_1(u,v)\) and solve for \(v\)
We know the formula for \(p\) and can do some algebra to get \(v\) after some algebra
24.6.2 Gumbel Copula
Properties:
Asymmetric
more probability in the tails than Frank’s
Gumbel Copula
\[\begin{equation} C(u,v) = \exp\left\{ -\left[(-\ln(u))^a + (- \ln (v))^a \right]^{1/a} \right\} \tag{24.12} \end{equation}\]Conditional distribution
\[\begin{equation} C_1(u,v) = C(u,v) \left[(-\ln(u))^a + (- \ln (v))^a \right]^{(-1 + 1/a)} \cdot (-\ln(u))^{a-1} \cdot \dfrac{1}{u} \tag{24.13} \end{equation}\]Density
- Super complicated…
Kendall’s \(\tau\)
\[\begin{equation} \tau = 1 - \frac{1}{a} \tag{24.14} \end{equation}\]\(v\) can’t be solve from \(p=C_1(u,v)\) \(\Rightarrow\) Need to simulate to some other ways
24.6.2.1 Simulation
We can’t solve \(v\) like how we did with Frank
For a given \(\tau\), we solve for \(a\) using (24.14)
Simulate 2 r.v.:
\[p,r \sim U[0,1]\]
- Numerically solve for \(s\) that satisfies
- Use \(s\) we can get:
24.6.3 Heavy Right Tail Copula
Properties
- Less correlation in the left tail but high in the right tail
HRT Copula
\[\begin{equation} C(u,v) = [u + v - 1] + \left[ (1-u)^{-1/a} + (1 - v)^{-1/a} -1 \right]^{-a} \:\: : \:\: a > 0 \tag{24.17} \end{equation}\]Conditional distribution
\[\begin{equation} C_1(u,v) = 1 - \left[ (1-u)^{-1/a} + (1 - v)^{-1/a} -1 \right]^{-a-1} \times (1-u)^{-1-1/a} \tag{24.18} \end{equation}\]Density
\[\begin{equation} c(u,v) = (1 + \dfrac{1}{a}) - \left[ (1-u)^{-1/a} + (1 - v)^{-1/a} -1 \right]^{-a-2} \times [(1-u)(1-v)]^{-1-1/a} \tag{24.19} \end{equation}\]Kendall’s \(\tau\)
\[\begin{equation} \tau(a) = \dfrac{1}{2a + 1} \tag{24.20} \end{equation}\]24.6.3.1 Simulation
We can solve \(v\) from \(p=C_1(u,v)\) so we can simulate it same way as Frank’s
24.6.3.2 Joint Burr Distribution
Joint distn where marginal distn are Burr and the conditionals are also Burr
Join the 2 marginal Burr using the HRT copula
The 2 marginal distn needs to have the same \(a\) parameter as the HRT copula
Start with 2 Burr distribution:
\[F(x) = 1 - \left[ 1 + \left( \dfrac{x}{b} \right)^p \right]^{-a}\]
\[G(y) = 1 - \left[ 1 + \left( \dfrac{y}{d} \right)^q \right]^{-a}\]
Join with HRT with the same parameters \(a\) by plugging \(F(x)\) and \(G(y)\) into \(C(F(x), G(y))\)
\[H(x,y) = 1 - \left[ 1 + \left( \dfrac{x}{b} \right)^p \right]^{-a} - \left[ 1 + \left( \dfrac{y}{d} \right)^q \right]^{-a} + \left[ 1 + \left( \dfrac{x}{b} \right)^p + \left( \dfrac{y}{d} \right)^q \right]^{-a}\]
With condition distribution
\[G_{(Y \mid X)}(y \mid x) = 1 - \left[ 1 + \left( \dfrac{y}{d_x} \right)^q \right]^{-(a+1)}\]
Where
\[d_x = d \left[ 1 + \left( \dfrac{x}{b} \right)^{\frac{p}{q}} \right]\]
Analogous to the joint normal, in that the marginal and conditional distn are the same
\(a\) is to control correlation
\(p\) & \(q\) is used to fit the tail
\(b\) & \(d\) are used to set the scales of the distn
24.6.4 Normal Copula
Joins 2 distn using correlations from the bi-variate normal
Properties
More dependencies in the tail then Frank
Symmetrical
The copula take \(u\) and \(v\) from any distn and converts them to standard normal variables and calculates the probability under the joint normal distn with parameter \(a\)
Definitions
\(N(x; \: m,v) =\) Normal distribution with mean \(m\) and variance \(v\)
Therefore
\[P(X \leq x) = N(x; \: m,v) \:\:\:\:\: \mathbb{R}^2 \rightarrow [0,1]\]
Use the following shorthand for standard normal
\[N(x) = N(x; \: 0,1)\]
\(B(x,y; \: a)\) Bivariate standard normal distribution with Pearson correlation \(a\)
\[P(X \leq x, Y \leq y) = B(x, y; \:a) \:\:\:\:\: \mathbb{R}^2 \rightarrow [0,1]\]
\(p(u)\) is the inverse of the standard normal \(\Phi^{-1}(u)\)
\[p(u) \:\:\:\:\: [0,1] \rightarrow \mathbb{R}\]
\[N(p(u)) = u\]
e.g. \(p(0,95) = 1.645\)
Normal Copula
\[\begin{equation} C(u,v) = B[p(u), p(v); \: a] \tag{24.21} \end{equation}\]Conditional distribution
\[\begin{equation} C_1(u,v) = N(p(v); a p(u), 1-a^2) \tag{24.22} \end{equation}\]Density
\[\begin{equation} c(u,v) = \dfrac{\exp\left( \dfrac{[a^2 p(u)^2 - 2a p(u) p(v) + a^2 p(v)^2]}{2(1-a^2)} \right)}{\sqrt{(1-a^2)}} \tag{24.23} \end{equation}\]Kendall’s \(\tau\)
\[\begin{equation} \tau(a) = \dfrac{2 \arcsin(a)}{\pi} \tag{24.24} \end{equation}\] \[\begin{equation} a = \sin \left( \tau \times \dfrac{\pi}{2} \right) \tag{24.25} \end{equation}\]24.6.4.1 Simulation
Normal copula is simple to simulate from and also easy to generalizes to multiple dimensions
Solve for \(a\) with the \(\tau\) using (24.25)
Simulate 2 r.v.
\[u,r \sim U[0,1]\]
- Get the standard normal value of the 2 percentiles
\[x = p(u)\]
\[y = p(r)\]
- Join the 2 normal value with
\[z = ax + y \sqrt{1 - a^2}\]
- Convert \(z\) to a percentile with the normal function to get \(v\)
\[ v = N(z)\]
24.6.5 Partial Perfect Correlation Copula
Krep’s Partial Perfect Correlation Copula
Sort of artificial, more useful for simulating evens then for description of actual outcomes
Generates dependencies by sometimes simulating \(u\) & \(v\) where they are independent and sometimes 100% dependent by setting \(v=u\)
- Level of dependency is controlled by
\[q(u,p): [0,1]^2 \rightarrow [0,1]\]
- \(q(u,p)\) needs to be symmetric
Definition
Simulate PPC by drawing \(u\), \(p\) & \(w\) from \(U[0,1]\)
\(v = \begin{cases} p &:q(u,p) < w & Independent \\ u &:q(u,p) \geq w & Dependent \\ \end{cases}\)
Partial Perfect Power
\(q(u,p) = (up)^a\)
More concentrate at the top right, since if either \(u\) or \(v\) is large then the other will likely be at the same percentile \(\Rightarrow\) perfectly correlated